5,691 research outputs found

    Lattice QCD data versus Chiral Perturbation Theory: the case of MπM_\pi

    Get PDF
    I present a selection of recent lattice data by major collaborations for the pseudo-Goldstone boson masses in full (Nf=2N_f=2) QCD, where the valence quarks are chosen exactly degenerate with the sea quarks. At least the more chiral points should be consistent with Chiral Perturbation Theory for the latter to be useful in extrapolating to physical masses. Perspectives to reliably determine NLO Gasser-Leutwyler coefficients are discussed.Comment: 3 pages, 4 figures, ICHEP 2002, v2: one statement clarified, one ref. adde

    Integrating out the heaviest quark in N--flavour ChPT

    Full text link
    We extend a known method to integrate out the strange quark in three flavour chiral perturbation theory to the context of an arbitrary number of flavours. As an application, we present the explicit formulae to one--loop accuracy for the heavy quark mass dependency of the low energy constants after decreasing the number of flavours by one while integrating out the heaviest quark in N--flavour chiral perturbation theory.Comment: 18 pages, 1 figure. Text and references added. To appear in EPJ

    On the pion decay constant

    Full text link
    The pion decay constant f_pi plays a crucial role in many areas of low energy particle physics. Its value may e.g. be deduced from experimental data on leptonic pion decays. Here, we provide comments on several aspects of this evaluation. In particular, we point out that at the present level of experimental accuracy, the value of f_pi is sensitive to the value of the pion mass chosen in its chiral expansion.Comment: 15 pages, 3 figures. Accepted for publication in Phys. Lett.

    Pion mass dependence of the Kl3K_{l3} semileptonic scalar form factor within finite volume

    Full text link
    We calculate the scalar semileptonic kaon decay in finite volume at the momentum transfer tm=(mKmπ)2t_{m} = (m_{K} - m_{\pi})^2, using chiral perturbation theory. At first we obtain the hadronic matrix element to be calculated in finite volume. We then evaluate the finite size effects for two volumes with L=1.83fmL = 1.83 fm and L=2.73fmL= 2.73 fm and find that the difference between the finite volume corrections of the two volumes are larger than the difference as quoted in \cite{Boyle2007a}. It appears then that the pion masses used for the scalar form factor in ChPT are large which result in large finite volume corrections. If appropriate values for pion mass are used, we believe that the finite size effects estimated in this paper can be useful for Lattice data to extrapolate at large lattice size.Comment: 19 pages, 5 figures, accepted for publication in EPJ

    Thermal reaction of Pt film with 110 GaN epilayer

    Get PDF
    Backscattering spectrometry, x-ray diffractometry, and scanning electron microscopy have been used to study the reaction of a thin Pt film with an epilayer of [110] GaN on [110] sapphire upon annealing at 450, 550, 650, 750, and 800 degrees C for 30 min. A Ga concentration of 2 at. % is detected by MeV He-4(++) backscattering spectrometry in the Pt layer at 550 degrees C. By x-ray diffraction, structural changes are observed already at 450 degrees C. At 650 OC, textured Ga2Pt appears as reaction product. The surface morphology exhibits instabilities by the formation of blisters at 650 degrees C and voids at 800 degrees C

    Solitons and kinks in a general car-following model

    Full text link
    We study a car-following model of traffic flow which assumes only that a car's acceleration depends on its own speed, the headway ahead of it, and the rate of change of headway, with only minimal assumptions about the functional form of that dependence. The velocity of uniform steady flow is found implicitly from the acceleration function, and its linear stability criterion can be expressed simply in terms of it. Crucially, unlike in previously analyzed car-following models, the threshold of absolute stability does not generally coincide with an inflection point in the steady velocity function. The Burgers and KdV equations can be derived under the usual assumptions, but the mKdV equation arises only when absolute stability does coincide with an inflection point. Otherwise, the KdV equation applies near absolute stability, while near the inflection point one obtains the mKdV equation plus an extra, quadratic term. Corrections to the KdV equation "select" a single member of the one-parameter set of soliton solutions. In previous models this has always marked the threshold of a finite- amplitude instability of steady flow, but here it can alternatively be a stable, small-amplitude jam. That is, there can be a forward bifurcation from steady flow. The new, augmented mKdV equation which holds near an inflection point admits a continuous family of kink solutions, like the mKdV equation, and we derive the selection criterion arising from the corrections to this equation.Comment: 25 page

    Isospin Violation in Chiral Perturbation Theory and the Decays \eta \ra \pi \ell \nu and \tau \ra \eta \pi \nu

    Full text link
    I discuss isospin breaking effects within the standard model. Chiral perturbation theory presents the appropriate theoretical framework for such an investigation in the low--energy range. Recent results on the electromagnetic contributions to the masses of the pseudoscalar mesons and the K3K_{\ell 3} amplitudes are reported. Using the one--loop formulae for the η3\eta_{\ell 3} form factors, rather precise predictions for the decay rates of ηπν\eta \rightarrow \pi \ell \nu can be obtained. Finally, I present an estimate of the \tau \ra \eta \pi \nu branching ratio derived from the dominant meson resonance contributions to this decay.Comment: 10 pages, latex, one figure available upon reques

    The role of strange sea quarks in chiral extrapolations on the lattice

    Full text link
    Since the strange quark has a light mass of order Lambda_QCD, fluctuations of sea s-s bar pairs may play a special role in the low-energy dynamics of QCD by inducing significantly different patterns of chiral symmetry breaking in the chiral limits N_f=2 (m_u=m_d=0, m_s physical) and N_f=3 (m_u=m_d=m_s=0). This effect of vacuum fluctuations of s-s bar pairs is related to the violation of the Zweig rule in the scalar sector, described through the two O(p^4) low-energy constants L_4 and L_6 of the three-flavour strong chiral lagrangian. In the case of significant vacuum fluctuations, three-flavour chiral expansions might exhibit a numerical competition between leading- and next-to-leading-order terms according to the chiral counting, and chiral extrapolations should be handled with a special care. We investigate the impact of the fluctuations of s-s bar pairs on chiral extrapolations in the case of lattice simulations with three dynamical flavours in the isospin limit. Information on the size of the vacuum fluctuations can be obtained from the dependence of the masses and decay constants of pions and kaons on the light quark masses. Even in the case of large fluctuations, corrections due to the finite size of spatial dimensions can be kept under control for large enough boxes (L around 2.5 fm).Comment: 31 pages, 9 figures. A few comments added and typos correcte

    Chiral Perturbation Theory for the Quenched Approximation of QCD

    Full text link
    [This version is a minor revision of a previously submitted preprint. Only references have been changed.] We describe a technique for constructing the effective chiral theory for quenched QCD. The effective theory which results is a lagrangian one, with a graded symmetry group which mixes Goldstone bosons and fermions, and with a definite (though slightly peculiar) set of Feynman rules. The straightforward application of these rules gives automatic cancellation of diagrams which would arise from virtual quark loops. The techniques are used to calculate chiral logarithms in fK/fπf_K/f_\pi, mπm_\pi, mKm_K, and the ratio of sˉs\langle{\bar s}s\rangle to uˉu\langle{\bar u}u\rangle. The leading finite-volume corrections to these quantities are also computed. Problems for future study are described.Comment: 14 page

    Chiral perturbation theory with Wilson-type fermions including a2a^2 effects: Nf=2N_f=2 degenerate case

    Full text link
    We have derived the quark mass dependence of mπ2m_{\pi}^2, mAWIm_{\rm AWI} and fπf_{\pi}, using the chiral perturbation theory which includes the a2a^2 effect associated with the explicit chiral symmetry breaking of the Wilson-type fermions, in the case of the Nf=2N_f=2 degenerate quarks. Distinct features of the results are (1) the additive renormalization for the mass parameter mqm_q in the Lagrangian, (2) O(a)O(a) corrections to the chiral log (mqlogmqm_q\log m_q) term, (3) the existence of more singular term, logmq\log m_q, generated by a2a^2 contributions, and (4) the existence of both mqlogmqm_q\log m_q and logmq\log m_q terms in the quark mass from the axial Ward-Takahashi identity, mAWIm_{\rm AWI}. By fitting the mass dependence of mπ2m_\pi^2 and mAWIm_{\rm AWI}, obtained by the CP-PACS collaboration for Nf=2N_f=2 full QCD simulations, we have found that the data are consistently described by the derived formulae. Resumming the most singular terms logmq\log m_q, we have also derived the modified formulae, which show a better control over the next-to-leading order correction.Comment: 21 pages, 4 figures (10 eps files), Revtex4, some discussions and references added, the final version to appear in PR
    corecore